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THE STANDARD PARADIGM OF
GALACTIC CR ACCELERATION

o N Protons and electrons are accelerated at the forward shocks
-l A o of supernova remnants (SNRs) via diffusive shock
. . ” acceleration (DSA).*
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THE STANDARD PARADIGM OF
GALACTIC CR ACCELERATION

DSA predicts power law distributions of CRs.*
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THE STANDARD PARADIGM OF
GALACTIC CR ACCELERATION

DSA predicts power law distributions of CRs.*
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DARD PARADIGM OF
CR ACCELERATION

s to DSA predict the formation of a
the shock.*
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*e.g., Drury+81, Drury83, Jones+91, Malkov+01



DARD PARADIGM OF
CR ACCELERATION

on lengths shorter than the extent of the
yielding q > 2).
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DARD PARADIGM OF
CR ACCELERATION

on lengths longer than the extent of the
yielding q < 2).
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DARD PARADIGM OF
CR ACCELERATION

cts concave spectra, with q, <4 (q < 2)
1 GeV/c.




THE PROBLEM WITH DSA

Observations point toward CR acceleration with spectra steeper than E2 (i.e., q > 2).
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THE PROBLEM WITH DSA

Observations point toward CR acceleration with spectra steeper than E2 (i.e., q > 2).

1. y-ray emission from Galactic SNRs suggest 2.2 < g < 2.6.
e.g., Caprioli11, Giordano+12, Saha+14, Aharonian+19

2. Radio emission from young extragalactic SNe (radio SNe) suggest q = 3.
e.g., Chevalier+06, Chevalier+17, Soderberg+10, Soderberg+12, Kamble+16, Terreran+19

3. Observations of Galactic CRs require 2.3 S q < 2.4.
e.g., Evoli+19
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STEEP SPECTRA IN SIMULATIONS

Kinetic simulations performed in Haggerty+20 and Caprioli+20 naturally reproduce
steep spectra (see also talk by D. Caprioli, ID: 1345).
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ENHANCED COMPRESSION RATIOS

Intriguingly, Haggerty+20 and Caprioli+20 also find fluid compression ratios
significantly larger than 4.
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ENHANCED
COMPRESSION
RATIOS

Observations also point towards
large compression ratios: 6 <R <

7 in Tycho (Warren+05),4 <R <7
in SN1006 (Giuffrida+21,
submitted)

Giuffrida+21, submitted

Compression ratio

Obliquity angle (deg)
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THE "POSTCURSOR”

Magnetic fluctuations generated by CR-driven instabilities
in the upstream retain their inertia over a non-negligible
distance when advected into the downstream.
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THE "POSTCURSOR”

Magnetic fluctuations generated by CR-driven instabilities
in the upstream retain their inertia over a non-negligible
distance when advected into the downstream.

o 'Iﬁduétion‘ drift CRs isotropize these magnetic fluctuations = a postcursor
| P g P
t the local Alfvén of drifting magnetic fluctuations and CRs enhances
g mag
speed relative to escape from the acceleration region, raising the fluid
khe_ compression ratio while steepening the CR spectrum.
Vi“




THE "POSTCURSOR”

Equivalently, since particles are scattered by magnetic
fluctuations, the postcursor modifies the compression ratio
that particles “see.”

Uiq

U2 + VA 2

R =




THE "POSTCURSOR”

Equivalently, since particles are scattered by magnetic
fluctuations, the postcursor modifies the compression ratio
that particles “see.”

Uiq

U2 + VA 2

R =

Efficient CR acceleration and thus B-field amplification yield
0.5 < v, 5/u, < 1 and spectra steeper than E-2.




THE POSTCURSOR

The postcursor paradigm predicts a physical relationship between CR acceleration
efficiency, the magnetic pressure fraction, and q.

3R SR
dp = —

R-1-a R-1-./2Rég>

Magnetic pressure fraction =
B2/(81Tpov,p°)
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THE
POSTCURSOR

The postcursor paradigm predicts
a physical relationship between
CR acceleration efficiency, the
magnetic energy density
downstream, and q.

REBECCA DIESING

Diesing+21, submitted




Magnetic pressure fraction assuming ampilification
driven by the non-resonant streaming instability

THE
POSTCURSOR

The postcursor paradigm predicts
a physical relationship between
CR acceleration efficiency, the
magnetic energy density
downstream, and q.

mnmn v, =2e+03 kms!
m— mm \, =5e+03 km s~!
/= 1e+04 km st
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THE UPSTREAM REVISITED

Magnetic fluctuations in the upstream also drift with respect
to the background plasma.*

Because escaping particles
drive magnetic field
amplification in the upstream,
these fluctuations move
against the fluid (away from
the shock).

*e.g., Zirakshvili+08, Caprioli11,12, Kang+13, Slane+14
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THE UPSTREAM REVISITED

Magnetic fluctuations in the upstream also drift with respect
to the background plasma.*

Uy — VA1
U2 + VA 2

R =

As a result, CRs “feel” and even smaller compression ratio,
further steepening their spectra.

*e.g., Zirakshvili+08, Caprioli11,12, Kang+13, Slane+14




THE UPSTREAM REVISITED

Magnetic fluctuations in the upstream also drift with respect
to the background plasma.*

Uy — VA1
U2 + VA 2

R =

However, since magnetic fluctuations are compressed in the
downstream, this effect remains subdominant to the
postcursor.

*e.g., Zirakshvili+08, Caprioli11,12, Kang+13, Slane+14




PREDICTING g

Since g depends on the Alfvén speed which depends on CR-driven
magnetic field amplification, quantifying the steepening due to the
postcursor from first principles requires a self-consistent calculation.
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PARTICLE ACCELERATION

Calculate the CR proton spectrum by solving the Parker transport equation.

Assume a fraction n of particles crossing the shock are injected into DSA.

Advection Diffusion Adiabatic compression Injection
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MODELING CR ACCELERATION

Calculate the CR proton spectrum by solving the Parker transport equation.

To include a postcursor, we consider {i(x), the velocity of magnetic scattering centers.

Advection Diffusion Adiabatic compression Injection

REBECCA DIESING 28



MODELING CR ACCELERATION

Use CRAFT (method paper in prep.), a semi-analytic model of non-linear DSA which
self-consistently accounts for particle acceleration and magnetic field amplification.

Solve equations for conservation
of mass, energy, and momentum

Solve the Parker equation given
injection and boundary conditions.
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Solve a transport equation for
magnetic turbulence.

See also Amato+06, Caprioli+10; Caprioli12.
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MODELING CR ACCELERATION

Use CRAFT (method paper in prep.), a semi-analytic model of non-linear DSA which
self-consistently accounts for particle acceleration and magnetic field amplification.

CRAFT calculates f(x,p) (for protons) at each timestep.

See also Amato+06, Caprioli+10; Caprioli12.
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MAGNETIC FIELD AMPLIFICATION

We model magnetic field amplification by assuming contributions from both the
resonant streaming instability* and the non-resonant hybrid instability.**

Solve the Parker
equation given injection
and boundary conditions.

Solve equations for
conservation of mass, PCR,l
energy, and momentum PBl,res — Tar

4Ma o

Ush Pcr1
2¢ yor — 1

_ 2 2
PB71 _ \/PBl,res + PBl,Bell

Pp1 Bell =

Solve the transport
equation for magnetic
turbulence.

See contribution by G.
*e.g., Kulsrud+69, Skilling75, Bell78, Lagage+83; **Bell04 Zacharegkas (lD 1 356)
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MAGNETIC FIELD AMPLIFICATION

Our model reproduces the magnetic fields inferred for young SNRs* and as well as
the observed relationship between shock velocity and downstream Alfvén speed.
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Diesing+21, submitted
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*e.g., Vink+03, Volk+05, Parizot+06, Caprioli+08, Ressler+14, Petruk+21
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RESULTS

For a Tycho-like SNR with an initial
energy of 105" erg injecting 1 Mg
into a medium with particle
density 1 cm-3, we reproduce
spectra that are consistently
steeper than E-2.
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: Diesing+21, submitted
i o’

RESULTS &

The spectral slope of Tycho-I\lke
SNR after 400 yr is in good

agreement with the value inferred

from observations: qrycpo ~ 2.3.*
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*e.g., Giordano+12, Archambault+17

REBECCA DIESING

34



RESULTS

Young, fast remnants exhibit
steeper spectra, up to q = 2.7 for

a 3 uG ambient magnetic field.
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RESULTS

Young, fast remnants exhibit
steeper spectra, up to q = 2.7 for

a 3 uG ambient magnetic field.

This relationship disappears for
slow shocks, i.e., when the
resonant instability dominates.
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COMPARISON
TO OBSERVATIONS:

GALACTIC SNRS

Our modeled spectra produce
good agreement with the spectra

of Galactic SNRs (see Caprioli11).
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COMPARISON
TO OBSERVATIONS:

RADIO SNE

Our toy-model radio supernova
(i.e., a young, fast SNR expanding
into a dense wind) yields a
spectrum « E-3, consistent with
observations.*

*e.g., Chevalier+06, Chevalier+17,
Soderberg+10, Soderberg+12, Bell+11
Kamble+16, Terreran+19

Diesing+21, submitted
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ULTRA-FAST
OUTFLOWS

CRAFT was able to reproduce the
stacked y-ray SED.
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Ajello+Diesing+21, submitted
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SUMMARY

1. We modeled CR acceleration in SNRs while self-consistently
accounting for the effect of a postcursor, or downstream
region in which magnetic fluctuations and CRs drift away from
the shock with respect to the background fluid.

2. We find that the presence of a postcursor substantially
steepens CR spectra, with g ~ 2.3 for a "typical” SNR.

This steepening is enhanced in faster shocks.

3. Our model reproduces the modestly steep spectra of Galactic
SNRs (g ~2.3) and the very steep spectra of radio SNe (q ~ 3).

This result implies that the presence of a postcursor may resolve the
tension between DSA predictions and observations.

For more information, please see Diesing+21 (arXiv:2107.08520).




