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Anomalous Diffusion



Anomalous Diffusion

[Brockmann, 2010]

Human Travel Behaviour Jumps of Spider Monkeys

[Ramos-Fernandez et al., 2003]



Models for Anomalous Diffusion

Idea: Generalize Diffusion Equation to non-integer derivatives

Using symmetric fractional Riesz derivative (generalized Laplacian)

The Astrophysical Journal, 796:125 (4pp), 2014 December 1 Litvinenko & Effenberger

f (x,∞) = a−1, x < 0. (4)

In the remainder of the paper, we investigate the follow-
ing fractional differential equation that generalizes the usual
diffusion-advection equation:

∂f

∂t
= κ

∂αf

∂|x|α
+ a

∂f

∂x
+ δ(x) (5)

(e.g., Stern et al. 2014). The equation governs the evolution of
a distribution function f(x, t) for t > 0 and −∞ < x < ∞. For
simplicity, we assume the initial condition

f (x, 0) = 0. (6)

The advection speed a and diffusion coefficient κ (now with
dimensions lengthα/time) are positive constants. We use the
Riesz derivative to define a fractional spatial derivative:

∂αf (x, t)
∂|x|α

= 1
π

sin
(π

2
α
)

Γ(1 + α)

×
∫ ∞

0

f (x + ξ ) − 2f (x) + f (x − ξ )
ξ 1+α

dξ (7)

(Samko et al. 1993; Saichev & Zaslavsky 1997). Because the
derivative corresponds to a fractional Laplacian operator in
higher dimensions, an alternative notation −(−∆)α/2f is also
used (Mainardi et al. 2001). Although the regularized form
above is defined for 0 < α < 2, in the following we are mainly
interested in the superdiffusive case 1 < α < 2.

3. FOURIER TRANSFORM SOLUTION
AND ASYMPTOTICS

The Fourier transform gives a convenient method of solv-
ing the fractional diffusion-advection equation on the interval
−∞ < x < ∞. Taking the Fourier transform of Equation (5)
yields

∂ f̃

∂t
= −κ|k|αf̃ + iakf̃ +

1
2π

, (8)

where

f̃ (k, t) = 1
2π

∫ ∞

−∞
f (x, t) exp(−ikx)dx. (9)

Integration of the first-order equation for f̃ yields

f̃ (k, t) = 1
2π

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

, (10)

where an integration constant is specified by the initial condition
f̃ (k, 0) = 0. Now the inverse Fourier transform gives the
solution

f (x, t) = 1
2π

∫ ∞

−∞

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

exp (ikx) dk.

(11)
In the non-diffusive case, κ = 0 and the integral is evaluated to
give an expanding “top-hat” solution

f (x, t)|κ=0 = f0(x, t) = 1
2a

[
sgn(x + at) − sgn(x)

]
. (12)

The solution of Equation (5) can also be expressed as

f (x, t) =
∫ t

0
G(x + at ′, t ′)dt ′, (13)

where the Green’s function G(x, t) satisfies the fractional
diffusion equation

∂G

∂t
= κ

∂αG

∂|x|α
+ δ(x)δ(t). (14)

Its Fourier transform is given by

∂G̃

∂t
= −κ|k|αG̃ +

1
2π

δ(t). (15)

It follows that

G̃(k, t) = 1
2π

exp(−κ|k|αt), (16)

and the inverse Fourier transform yields

G(x, t) = 1
π

∫ ∞

0
exp(−κkαt) cos(kx)dk (17)

(e.g., Chukbar 1995).
An asymptotic expression for G(x, t) is obtained by integrating

Equation (17) by parts and applying an analogue of Watson’s
lemma for Fourier type integrals (e.g., Ablowitz & Fokas 1997).
For x % (κt)1/α , the result is

G(x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
κt

|x|1+α
. (18)

For x > 0, substitution into Equation (13) yields

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
∫ t

0

κt ′

(x + at ′)1+α
dt ′, (19)

and so the distribution function f(x, t) is given by

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2

[
x1−α − x + αat

(x + at)α

]
(20)

as long as x + at % (κt)1/α and 1 < α < 2. Two limiting cases
are as follows:

f (x, t) ≈ 1
2π

sin
(π

2
α
)

Γ(1 + α)
κt2

x1+α
, x % at, (21)

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2
x1−α, 0 < x ' at.

(22)

Equation (22) is essentially the asymptotic power law that
was previously used in the data analysis of energetic particles,
accelerated in the solar corona (Trotta & Zimbardo 2011) and at
interplanetary shocks (Perri & Zimbardo 2007, 2009; Sugiyama
& Shiota 2011). For instance, Perri & Zimbardo (2007, 2009)
used a formula for the particle density at a fixed point due to a
shock-associated source moving with a speed Vsh. The formula
follows from our analysis by changing the reference frame.
Suppose a shock, initially located at x0 = −Vsht0, moves at
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f (x,∞) = a−1, x < 0. (4)

In the remainder of the paper, we investigate the follow-
ing fractional differential equation that generalizes the usual
diffusion-advection equation:

∂f

∂t
= κ

∂αf

∂|x|α
+ a

∂f

∂x
+ δ(x) (5)

(e.g., Stern et al. 2014). The equation governs the evolution of
a distribution function f(x, t) for t > 0 and −∞ < x < ∞. For
simplicity, we assume the initial condition

f (x, 0) = 0. (6)

The advection speed a and diffusion coefficient κ (now with
dimensions lengthα/time) are positive constants. We use the
Riesz derivative to define a fractional spatial derivative:

∂αf (x, t)
∂|x|α

= 1
π

sin
(π

2
α
)

Γ(1 + α)

×
∫ ∞

0

f (x + ξ ) − 2f (x) + f (x − ξ )
ξ 1+α

dξ (7)

(Samko et al. 1993; Saichev & Zaslavsky 1997). Because the
derivative corresponds to a fractional Laplacian operator in
higher dimensions, an alternative notation −(−∆)α/2f is also
used (Mainardi et al. 2001). Although the regularized form
above is defined for 0 < α < 2, in the following we are mainly
interested in the superdiffusive case 1 < α < 2.

3. FOURIER TRANSFORM SOLUTION
AND ASYMPTOTICS

The Fourier transform gives a convenient method of solv-
ing the fractional diffusion-advection equation on the interval
−∞ < x < ∞. Taking the Fourier transform of Equation (5)
yields

∂ f̃

∂t
= −κ|k|αf̃ + iakf̃ +

1
2π

, (8)

where

f̃ (k, t) = 1
2π

∫ ∞

−∞
f (x, t) exp(−ikx)dx. (9)

Integration of the first-order equation for f̃ yields

f̃ (k, t) = 1
2π

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

, (10)

where an integration constant is specified by the initial condition
f̃ (k, 0) = 0. Now the inverse Fourier transform gives the
solution

f (x, t) = 1
2π

∫ ∞

−∞

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

exp (ikx) dk.

(11)
In the non-diffusive case, κ = 0 and the integral is evaluated to
give an expanding “top-hat” solution

f (x, t)|κ=0 = f0(x, t) = 1
2a

[
sgn(x + at) − sgn(x)

]
. (12)

The solution of Equation (5) can also be expressed as

f (x, t) =
∫ t

0
G(x + at ′, t ′)dt ′, (13)

where the Green’s function G(x, t) satisfies the fractional
diffusion equation

∂G

∂t
= κ

∂αG

∂|x|α
+ δ(x)δ(t). (14)

Its Fourier transform is given by

∂G̃

∂t
= −κ|k|αG̃ +

1
2π

δ(t). (15)

It follows that

G̃(k, t) = 1
2π

exp(−κ|k|αt), (16)

and the inverse Fourier transform yields

G(x, t) = 1
π

∫ ∞

0
exp(−κkαt) cos(kx)dk (17)

(e.g., Chukbar 1995).
An asymptotic expression for G(x, t) is obtained by integrating

Equation (17) by parts and applying an analogue of Watson’s
lemma for Fourier type integrals (e.g., Ablowitz & Fokas 1997).
For x % (κt)1/α , the result is

G(x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
κt

|x|1+α
. (18)

For x > 0, substitution into Equation (13) yields

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
∫ t

0

κt ′

(x + at ′)1+α
dt ′, (19)

and so the distribution function f(x, t) is given by

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2

[
x1−α − x + αat

(x + at)α

]
(20)

as long as x + at % (κt)1/α and 1 < α < 2. Two limiting cases
are as follows:

f (x, t) ≈ 1
2π

sin
(π

2
α
)

Γ(1 + α)
κt2

x1+α
, x % at, (21)

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2
x1−α, 0 < x ' at.

(22)

Equation (22) is essentially the asymptotic power law that
was previously used in the data analysis of energetic particles,
accelerated in the solar corona (Trotta & Zimbardo 2011) and at
interplanetary shocks (Perri & Zimbardo 2007, 2009; Sugiyama
& Shiota 2011). For instance, Perri & Zimbardo (2007, 2009)
used a formula for the particle density at a fixed point due to a
shock-associated source moving with a speed Vsh. The formula
follows from our analysis by changing the reference frame.
Suppose a shock, initially located at x0 = −Vsht0, moves at
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speed Vsh and arrives at x = 0 when t = 0. On changing
variables, Equation (20) yields

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

V 2
sh

(23)

×
[

(x − Vsht)1−α − x + (α − 1)Vsht + αVsht0

(x + Vsht0)α

]
,

which reduces to Equation (4) in Perri & Zimbardo (2007) on
assuming that the shock is coming from a very large distance,
t0 → ∞. Note for clarity that Perri & Zimbardo (2007) do not
specify a normalization constant b in their Equation (1), and
that their notation is different: their µ is our 1 + α, and their α
is our 3 −α. The latter expression appears in the dependence of
the variance of a particle displacement on time ∼ t3−α when a
finite particle speed is taken into account.

4. A WEAK DIFFUSION APPROXIMATION

A limitation of the analysis in the previous section is that we
used a short-time asymptotic (18) for the Green’s function G(x,t)
to derive Equation (20) for the particle distribution function f(x,
t), and so it is not clear whether the results are valid for at ' x.
In addition, the results are only valid for x > 0 because the
integral in Equation (13) diverges for x < 0 if Equation (18) is
used to evaluate the integral. To remove these limitations of the
analysis, we solve for f(x,t) in a weak diffusion approximation
that allows us to evaluate the integral in Equation (11) for both
x > 0 and x < 0.

The superdiffusive term in Equation (5) can be treated as
a perturbation sufficiently far from the locations where the
advective solution (12) predicts jumps in f (x, t). Suppose ld
is the distance from a jump where the diffusive and advective
terms in Equation (5) are comparable. To an order of magnitude,
κ∂αf/∂|x|α ∼ κf/lαd and a∂f/∂x ∼ af/ld . The diffusion
length is thus defined as

ld = (κ/a)1/(α−1). (24)

Now assuming that

ld ( |x|, |x + at |, at, (25)

we can formally treat κ as a small parameter, and so

f (x, t) ≈ f0(x, t) + κ
df (x, t)

dκ

∣∣∣∣
κ=0

, (26)

where f0(x, t) is given by Equation (12). Differentiation of
Equation (11) with respect to κ yields

f (x, t) ≈ f0(x, t)

+
κ

πa2

∫ ∞

0

[
cos kx − cos k(x + at)

k2−α

− (α − 1)at

(x + at)
cos k(x + at)

k2−α

]
dk, (27)

where the last term in the integrand is obtained by integrating
by parts and neglecting a rapidly varying term containing
exp[ik(x + at)] at the upper integration limit. On simplifying
and using Watson’s lemma, we get

f (x, t) ≈ f0(x, t) +
1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2

×
[
|x|1−α − x + αat

(x + at)|x + at |α−1

]
. (28)

For x > 0, we recover Equation (20) and its limiting cases,
confirming the analysis of the previous section. For x < 0, we
have

f (x, t) ≈ 1
2π

sin
(π

2
α
)

Γ(1 + α)
κt2

|x|1+α
, |x| ' at, (29)

f (x, t) ≈ 1
a

+
1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2
|x|1−α, |x| ( at.

(30)
The discontinuity at x = −at broadens into a smoother
transition. The solution is inapplicable in the vicinity of the
jump at |x + at | ≈ 0, because the weak diffusion approximation
is valid only as long as |x|, |x+at |, and at are large in comparison
with the diffusion length ld.

5. ACCURACY OF THE APPROXIMATION

Stern et al. (2014) gave the following exact Fourier series
solution to Equation (5) on a domain of length L:

f (x, t) =
∞∑

n=1

{

(1 + (−1)n+1)
[(nπ

L

)α

κL cos
(nπx

L

)

− nπa sin
(nπ

L
x
)

−
(nπ

L

)α

κL cos
(nπ

L
(x + at)

)
exp

(
−

(nπ

L

)α

κt
)

+ nπa sin
(nπ

L
(x + at)

)
exp

(
−

(nπ

L

)α

κt
)]/

((nπ

L

)2α

κ2L2 + n2π2a2
)}

. (31)

Because f (x, t) = f (x + 2L, t), the series does not represent
the solution of an initial value problem on an infinite interval for
t → ∞. For a localized source and finite t, however, the series
solution accurately represents f (x, t) on an infinite interval if L is
sufficiently large. In practice, we achieve accuracy by choosing
L ' at .

We compare the new analytical solutions of the previous
sections with a semi-numerical solution based on the Fourier
series expansion. We use Equation (31) and sum up N = 106

terms with L = 1000 to achieve high accuracy. We set a = 1,
which simply means that in the following we measure speeds in
units of the solar wind speed. We choose α = 1.5 in agreement
with the range of values inferred from the heliospheric particle
data (Perri & Zimbardo 2007, 2009; Sugiyama & Shiota 2011).
The superdiffusion coefficient κ is a key parameter of the
theory. Work is underway to estimate κ from the data (S. Perri
et al., in preparation). We adopt κ = 0.5 as an illustration
and investigate how the particle distribution evolves over a few
hundred advection times.

Figure 1 shows the results in a semi-logarithmic plot at time
t = 10. We find a good agreement between the analytical
(solid black line) and semi-numerical (black symbols) solutions,
except for the region around x = −at where the weak diffusion
approximation is not valid. The red box in the figure illustrates
the non-diffusive solution given by Equation (12). We have
truncated the analytical solution in the vicinity of x = −at over
a length l of 10 times the diffusion length (l = 10 ld = 2.5).
The green and blue lines give the steady-state solution for
the Gaussian diffusion case, given by Equation (3), and the
approximate steady-state solution, given by Equation (30).
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f (x,∞) = a−1, x < 0. (4)

In the remainder of the paper, we investigate the follow-
ing fractional differential equation that generalizes the usual
diffusion-advection equation:

∂f

∂t
= κ

∂αf

∂|x|α
+ a

∂f

∂x
+ δ(x) (5)

(e.g., Stern et al. 2014). The equation governs the evolution of
a distribution function f(x, t) for t > 0 and −∞ < x < ∞. For
simplicity, we assume the initial condition

f (x, 0) = 0. (6)

The advection speed a and diffusion coefficient κ (now with
dimensions lengthα/time) are positive constants. We use the
Riesz derivative to define a fractional spatial derivative:

∂αf (x, t)
∂|x|α

= 1
π

sin
(π

2
α
)

Γ(1 + α)

×
∫ ∞

0

f (x + ξ ) − 2f (x) + f (x − ξ )
ξ 1+α

dξ (7)

(Samko et al. 1993; Saichev & Zaslavsky 1997). Because the
derivative corresponds to a fractional Laplacian operator in
higher dimensions, an alternative notation −(−∆)α/2f is also
used (Mainardi et al. 2001). Although the regularized form
above is defined for 0 < α < 2, in the following we are mainly
interested in the superdiffusive case 1 < α < 2.

3. FOURIER TRANSFORM SOLUTION
AND ASYMPTOTICS

The Fourier transform gives a convenient method of solv-
ing the fractional diffusion-advection equation on the interval
−∞ < x < ∞. Taking the Fourier transform of Equation (5)
yields

∂ f̃

∂t
= −κ|k|αf̃ + iakf̃ +

1
2π

, (8)

where

f̃ (k, t) = 1
2π

∫ ∞

−∞
f (x, t) exp(−ikx)dx. (9)

Integration of the first-order equation for f̃ yields

f̃ (k, t) = 1
2π

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

, (10)

where an integration constant is specified by the initial condition
f̃ (k, 0) = 0. Now the inverse Fourier transform gives the
solution

f (x, t) = 1
2π

∫ ∞

−∞

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

exp (ikx) dk.

(11)
In the non-diffusive case, κ = 0 and the integral is evaluated to
give an expanding “top-hat” solution

f (x, t)|κ=0 = f0(x, t) = 1
2a

[
sgn(x + at) − sgn(x)

]
. (12)

The solution of Equation (5) can also be expressed as

f (x, t) =
∫ t

0
G(x + at ′, t ′)dt ′, (13)

where the Green’s function G(x, t) satisfies the fractional
diffusion equation

∂G

∂t
= κ

∂αG

∂|x|α
+ δ(x)δ(t). (14)

Its Fourier transform is given by

∂G̃

∂t
= −κ|k|αG̃ +

1
2π

δ(t). (15)

It follows that

G̃(k, t) = 1
2π

exp(−κ|k|αt), (16)

and the inverse Fourier transform yields

G(x, t) = 1
π

∫ ∞

0
exp(−κkαt) cos(kx)dk (17)

(e.g., Chukbar 1995).
An asymptotic expression for G(x, t) is obtained by integrating

Equation (17) by parts and applying an analogue of Watson’s
lemma for Fourier type integrals (e.g., Ablowitz & Fokas 1997).
For x % (κt)1/α , the result is

G(x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
κt

|x|1+α
. (18)

For x > 0, substitution into Equation (13) yields

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
∫ t

0

κt ′

(x + at ′)1+α
dt ′, (19)

and so the distribution function f(x, t) is given by

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2

[
x1−α − x + αat

(x + at)α

]
(20)

as long as x + at % (κt)1/α and 1 < α < 2. Two limiting cases
are as follows:

f (x, t) ≈ 1
2π

sin
(π

2
α
)

Γ(1 + α)
κt2

x1+α
, x % at, (21)

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2
x1−α, 0 < x ' at.

(22)

Equation (22) is essentially the asymptotic power law that
was previously used in the data analysis of energetic particles,
accelerated in the solar corona (Trotta & Zimbardo 2011) and at
interplanetary shocks (Perri & Zimbardo 2007, 2009; Sugiyama
& Shiota 2011). For instance, Perri & Zimbardo (2007, 2009)
used a formula for the particle density at a fixed point due to a
shock-associated source moving with a speed Vsh. The formula
follows from our analysis by changing the reference frame.
Suppose a shock, initially located at x0 = −Vsht0, moves at
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speed Vsh and arrives at x = 0 when t = 0. On changing
variables, Equation (20) yields

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

V 2
sh

(23)

×
[

(x − Vsht)1−α − x + (α − 1)Vsht + αVsht0

(x + Vsht0)α

]
,

which reduces to Equation (4) in Perri & Zimbardo (2007) on
assuming that the shock is coming from a very large distance,
t0 → ∞. Note for clarity that Perri & Zimbardo (2007) do not
specify a normalization constant b in their Equation (1), and
that their notation is different: their µ is our 1 + α, and their α
is our 3 −α. The latter expression appears in the dependence of
the variance of a particle displacement on time ∼ t3−α when a
finite particle speed is taken into account.

4. A WEAK DIFFUSION APPROXIMATION

A limitation of the analysis in the previous section is that we
used a short-time asymptotic (18) for the Green’s function G(x,t)
to derive Equation (20) for the particle distribution function f(x,
t), and so it is not clear whether the results are valid for at ' x.
In addition, the results are only valid for x > 0 because the
integral in Equation (13) diverges for x < 0 if Equation (18) is
used to evaluate the integral. To remove these limitations of the
analysis, we solve for f(x,t) in a weak diffusion approximation
that allows us to evaluate the integral in Equation (11) for both
x > 0 and x < 0.

The superdiffusive term in Equation (5) can be treated as
a perturbation sufficiently far from the locations where the
advective solution (12) predicts jumps in f (x, t). Suppose ld
is the distance from a jump where the diffusive and advective
terms in Equation (5) are comparable. To an order of magnitude,
κ∂αf/∂|x|α ∼ κf/lαd and a∂f/∂x ∼ af/ld . The diffusion
length is thus defined as

ld = (κ/a)1/(α−1). (24)

Now assuming that

ld ( |x|, |x + at |, at, (25)

we can formally treat κ as a small parameter, and so

f (x, t) ≈ f0(x, t) + κ
df (x, t)

dκ

∣∣∣∣
κ=0

, (26)

where f0(x, t) is given by Equation (12). Differentiation of
Equation (11) with respect to κ yields

f (x, t) ≈ f0(x, t)

+
κ

πa2

∫ ∞

0

[
cos kx − cos k(x + at)

k2−α

− (α − 1)at

(x + at)
cos k(x + at)

k2−α

]
dk, (27)

where the last term in the integrand is obtained by integrating
by parts and neglecting a rapidly varying term containing
exp[ik(x + at)] at the upper integration limit. On simplifying
and using Watson’s lemma, we get

f (x, t) ≈ f0(x, t) +
1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2

×
[
|x|1−α − x + αat

(x + at)|x + at |α−1

]
. (28)

For x > 0, we recover Equation (20) and its limiting cases,
confirming the analysis of the previous section. For x < 0, we
have

f (x, t) ≈ 1
2π

sin
(π

2
α
)

Γ(1 + α)
κt2

|x|1+α
, |x| ' at, (29)

f (x, t) ≈ 1
a

+
1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2
|x|1−α, |x| ( at.

(30)
The discontinuity at x = −at broadens into a smoother
transition. The solution is inapplicable in the vicinity of the
jump at |x + at | ≈ 0, because the weak diffusion approximation
is valid only as long as |x|, |x+at |, and at are large in comparison
with the diffusion length ld.

5. ACCURACY OF THE APPROXIMATION

Stern et al. (2014) gave the following exact Fourier series
solution to Equation (5) on a domain of length L:

f (x, t) =
∞∑

n=1

{

(1 + (−1)n+1)
[(nπ

L

)α

κL cos
(nπx

L

)

− nπa sin
(nπ

L
x
)

−
(nπ

L

)α

κL cos
(nπ

L
(x + at)

)
exp

(
−

(nπ

L

)α

κt
)

+ nπa sin
(nπ

L
(x + at)

)
exp

(
−

(nπ

L

)α

κt
)]/

((nπ

L

)2α

κ2L2 + n2π2a2
)}

. (31)

Because f (x, t) = f (x + 2L, t), the series does not represent
the solution of an initial value problem on an infinite interval for
t → ∞. For a localized source and finite t, however, the series
solution accurately represents f (x, t) on an infinite interval if L is
sufficiently large. In practice, we achieve accuracy by choosing
L ' at .

We compare the new analytical solutions of the previous
sections with a semi-numerical solution based on the Fourier
series expansion. We use Equation (31) and sum up N = 106

terms with L = 1000 to achieve high accuracy. We set a = 1,
which simply means that in the following we measure speeds in
units of the solar wind speed. We choose α = 1.5 in agreement
with the range of values inferred from the heliospheric particle
data (Perri & Zimbardo 2007, 2009; Sugiyama & Shiota 2011).
The superdiffusion coefficient κ is a key parameter of the
theory. Work is underway to estimate κ from the data (S. Perri
et al., in preparation). We adopt κ = 0.5 as an illustration
and investigate how the particle distribution evolves over a few
hundred advection times.

Figure 1 shows the results in a semi-logarithmic plot at time
t = 10. We find a good agreement between the analytical
(solid black line) and semi-numerical (black symbols) solutions,
except for the region around x = −at where the weak diffusion
approximation is not valid. The red box in the figure illustrates
the non-diffusive solution given by Equation (12). We have
truncated the analytical solution in the vicinity of x = −at over
a length l of 10 times the diffusion length (l = 10 ld = 2.5).
The green and blue lines give the steady-state solution for
the Gaussian diffusion case, given by Equation (3), and the
approximate steady-state solution, given by Equation (30).
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Figure 1. Fourier transform solution in a weak diffusion limit (Equation (28),
solid black line) and the series solution (Equation (31), black symbols) at time
t = 10. The dot-dashed blue line gives the approximate steady solution in
Equation (22) for x > 0 and Equation (30) for x < 0. For reference, the dashed
green line shows the steady state Gaussian diffusion solution in Equation (3), and
the red box shows the expanding top-hat, non-diffusive solution in Equation (12).
Parameters are α = 1.5, κ = 0.5, a = 1.
(A color version of this figure is available in the online journal.)

 0.001

 0.01

 0.1

 1

-40 -30 -20 -10  0  10  20  30  40

f(
x,

t)

x

Figure 2. Same as Figure 1, but now at time t = 200.
(A color version of this figure is available in the online journal.)

Figure 2 gives the same solutions as in Figure 1 at a later time
t = 200. The weak diffusion solution and the Fourier series
remain in good agreement as they slowly approach the steady
state. The downstream region in Figure 2 is already completely
filled since |x| ! at . An interesting feature of the solution is
a peak at the injection site x = 0, which is not present for
Gaussian diffusion.

6. DISCUSSION

We used the Fourier transform to analytically solve a frac-
tional diffusion-advection equation for cosmic-ray transport,
and we applied the solution to the problem of describing the
transport of energetic particles, accelerated at a traveling helio-
spheric shock. We also developed a weak diffusion approxima-
tion based on the exact Fourier transform solution. We confirmed

the validity of the approximation for both early and late times by
comparing it with an exact Fourier series solution. Our analysis
is motivated by recent applications of superdiffusive transport
models to the observed shock-accelerated particle distributions
(Perri & Zimbardo 2007, 2009; Sugiyama & Shiota 2011).

Our new solution quantifies the limited validity of the asymp-
totic expressions, used previously to interpret the particle data.
Specifically, the formula used by Perri & Zimbardo (2007, 2009)
and Sugiyama & Shiota (2011) is basically our Equation (23)
in the limit t0 → ∞, corresponding to a shock approaching an
observer from a very large distance Vsht0. As our results show,
however, it may take a very long time for the asymptotic ex-
pression to become accurate. The ratio of the second term in
Equation (23) to the first one is (−t/t0)α−1(α + (α − 1)t/t0)
at x = 0, and so our more accurate solution differs from the
t0 = ∞ asymptotic expression by about a factor of two when
the distance between the observer and the shock is as short as
one tenth of the initial distance Vsht0 between them.

To sum up, solar cosmic-ray data in various settings ap-
pear to be consistent with asymptotic propagator solutions to
a fractional diffusion equation or more general continuous-time
random-walk models (Zimbardo & Perri 2013). We argued,
however, that more accurate solutions of an appropriate trans-
port equation should be used for validating the superdiffusive
transport of energetic particles in the heliosphere. In the context
of the transport of particles, accelerated at a traveling helio-
spheric shock, our analysis strongly suggests that we should not
assume the initial distance Vsht0 of the shock from the observer
to be infinite. The shock travel time t0 should be a parameter of
the superdiffusive transport model.
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topic of this paper. F.E. appreciates support from the Interna-
tional Space Science Institute (ISSI) during a team meeting in
Bern on superdiffusive transport and thanks the team members
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f (x,∞) = a−1, x < 0. (4)

In the remainder of the paper, we investigate the follow-
ing fractional differential equation that generalizes the usual
diffusion-advection equation:

∂f

∂t
= κ

∂αf

∂|x|α
+ a

∂f

∂x
+ δ(x) (5)

(e.g., Stern et al. 2014). The equation governs the evolution of
a distribution function f(x, t) for t > 0 and −∞ < x < ∞. For
simplicity, we assume the initial condition

f (x, 0) = 0. (6)

The advection speed a and diffusion coefficient κ (now with
dimensions lengthα/time) are positive constants. We use the
Riesz derivative to define a fractional spatial derivative:

∂αf (x, t)
∂|x|α

= 1
π

sin
(π

2
α
)

Γ(1 + α)

×
∫ ∞

0

f (x + ξ ) − 2f (x) + f (x − ξ )
ξ 1+α

dξ (7)

(Samko et al. 1993; Saichev & Zaslavsky 1997). Because the
derivative corresponds to a fractional Laplacian operator in
higher dimensions, an alternative notation −(−∆)α/2f is also
used (Mainardi et al. 2001). Although the regularized form
above is defined for 0 < α < 2, in the following we are mainly
interested in the superdiffusive case 1 < α < 2.

3. FOURIER TRANSFORM SOLUTION
AND ASYMPTOTICS

The Fourier transform gives a convenient method of solv-
ing the fractional diffusion-advection equation on the interval
−∞ < x < ∞. Taking the Fourier transform of Equation (5)
yields

∂ f̃

∂t
= −κ|k|αf̃ + iakf̃ +

1
2π

, (8)

where

f̃ (k, t) = 1
2π

∫ ∞

−∞
f (x, t) exp(−ikx)dx. (9)

Integration of the first-order equation for f̃ yields

f̃ (k, t) = 1
2π

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

, (10)

where an integration constant is specified by the initial condition
f̃ (k, 0) = 0. Now the inverse Fourier transform gives the
solution

f (x, t) = 1
2π

∫ ∞

−∞

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

exp (ikx) dk.

(11)
In the non-diffusive case, κ = 0 and the integral is evaluated to
give an expanding “top-hat” solution

f (x, t)|κ=0 = f0(x, t) = 1
2a

[
sgn(x + at) − sgn(x)

]
. (12)

The solution of Equation (5) can also be expressed as

f (x, t) =
∫ t

0
G(x + at ′, t ′)dt ′, (13)

where the Green’s function G(x, t) satisfies the fractional
diffusion equation

∂G

∂t
= κ

∂αG

∂|x|α
+ δ(x)δ(t). (14)

Its Fourier transform is given by

∂G̃

∂t
= −κ|k|αG̃ +

1
2π

δ(t). (15)

It follows that

G̃(k, t) = 1
2π

exp(−κ|k|αt), (16)

and the inverse Fourier transform yields

G(x, t) = 1
π

∫ ∞

0
exp(−κkαt) cos(kx)dk (17)

(e.g., Chukbar 1995).
An asymptotic expression for G(x, t) is obtained by integrating

Equation (17) by parts and applying an analogue of Watson’s
lemma for Fourier type integrals (e.g., Ablowitz & Fokas 1997).
For x % (κt)1/α , the result is

G(x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
κt

|x|1+α
. (18)

For x > 0, substitution into Equation (13) yields

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
∫ t

0

κt ′

(x + at ′)1+α
dt ′, (19)

and so the distribution function f(x, t) is given by

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2

[
x1−α − x + αat

(x + at)α

]
(20)

as long as x + at % (κt)1/α and 1 < α < 2. Two limiting cases
are as follows:

f (x, t) ≈ 1
2π

sin
(π

2
α
)

Γ(1 + α)
κt2

x1+α
, x % at, (21)

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2
x1−α, 0 < x ' at.

(22)

Equation (22) is essentially the asymptotic power law that
was previously used in the data analysis of energetic particles,
accelerated in the solar corona (Trotta & Zimbardo 2011) and at
interplanetary shocks (Perri & Zimbardo 2007, 2009; Sugiyama
& Shiota 2011). For instance, Perri & Zimbardo (2007, 2009)
used a formula for the particle density at a fixed point due to a
shock-associated source moving with a speed Vsh. The formula
follows from our analysis by changing the reference frame.
Suppose a shock, initially located at x0 = −Vsht0, moves at
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speed Vsh and arrives at x = 0 when t = 0. On changing
variables, Equation (20) yields

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

V 2
sh

(23)

×
[

(x − Vsht)1−α − x + (α − 1)Vsht + αVsht0

(x + Vsht0)α

]
,

which reduces to Equation (4) in Perri & Zimbardo (2007) on
assuming that the shock is coming from a very large distance,
t0 → ∞. Note for clarity that Perri & Zimbardo (2007) do not
specify a normalization constant b in their Equation (1), and
that their notation is different: their µ is our 1 + α, and their α
is our 3 −α. The latter expression appears in the dependence of
the variance of a particle displacement on time ∼ t3−α when a
finite particle speed is taken into account.

4. A WEAK DIFFUSION APPROXIMATION

A limitation of the analysis in the previous section is that we
used a short-time asymptotic (18) for the Green’s function G(x,t)
to derive Equation (20) for the particle distribution function f(x,
t), and so it is not clear whether the results are valid for at ' x.
In addition, the results are only valid for x > 0 because the
integral in Equation (13) diverges for x < 0 if Equation (18) is
used to evaluate the integral. To remove these limitations of the
analysis, we solve for f(x,t) in a weak diffusion approximation
that allows us to evaluate the integral in Equation (11) for both
x > 0 and x < 0.

The superdiffusive term in Equation (5) can be treated as
a perturbation sufficiently far from the locations where the
advective solution (12) predicts jumps in f (x, t). Suppose ld
is the distance from a jump where the diffusive and advective
terms in Equation (5) are comparable. To an order of magnitude,
κ∂αf/∂|x|α ∼ κf/lαd and a∂f/∂x ∼ af/ld . The diffusion
length is thus defined as

ld = (κ/a)1/(α−1). (24)

Now assuming that

ld ( |x|, |x + at |, at, (25)

we can formally treat κ as a small parameter, and so

f (x, t) ≈ f0(x, t) + κ
df (x, t)

dκ

∣∣∣∣
κ=0

, (26)

where f0(x, t) is given by Equation (12). Differentiation of
Equation (11) with respect to κ yields

f (x, t) ≈ f0(x, t)

+
κ

πa2

∫ ∞

0

[
cos kx − cos k(x + at)

k2−α

− (α − 1)at

(x + at)
cos k(x + at)

k2−α

]
dk, (27)

where the last term in the integrand is obtained by integrating
by parts and neglecting a rapidly varying term containing
exp[ik(x + at)] at the upper integration limit. On simplifying
and using Watson’s lemma, we get

f (x, t) ≈ f0(x, t) +
1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2

×
[
|x|1−α − x + αat

(x + at)|x + at |α−1

]
. (28)

For x > 0, we recover Equation (20) and its limiting cases,
confirming the analysis of the previous section. For x < 0, we
have

f (x, t) ≈ 1
2π

sin
(π

2
α
)

Γ(1 + α)
κt2

|x|1+α
, |x| ' at, (29)

f (x, t) ≈ 1
a

+
1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2
|x|1−α, |x| ( at.

(30)
The discontinuity at x = −at broadens into a smoother
transition. The solution is inapplicable in the vicinity of the
jump at |x + at | ≈ 0, because the weak diffusion approximation
is valid only as long as |x|, |x+at |, and at are large in comparison
with the diffusion length ld.

5. ACCURACY OF THE APPROXIMATION

Stern et al. (2014) gave the following exact Fourier series
solution to Equation (5) on a domain of length L:

f (x, t) =
∞∑

n=1

{

(1 + (−1)n+1)
[(nπ

L

)α

κL cos
(nπx

L

)

− nπa sin
(nπ

L
x
)

−
(nπ

L

)α

κL cos
(nπ

L
(x + at)

)
exp

(
−

(nπ

L

)α

κt
)

+ nπa sin
(nπ

L
(x + at)

)
exp

(
−

(nπ

L

)α

κt
)]/

((nπ

L

)2α

κ2L2 + n2π2a2
)}

. (31)

Because f (x, t) = f (x + 2L, t), the series does not represent
the solution of an initial value problem on an infinite interval for
t → ∞. For a localized source and finite t, however, the series
solution accurately represents f (x, t) on an infinite interval if L is
sufficiently large. In practice, we achieve accuracy by choosing
L ' at .

We compare the new analytical solutions of the previous
sections with a semi-numerical solution based on the Fourier
series expansion. We use Equation (31) and sum up N = 106

terms with L = 1000 to achieve high accuracy. We set a = 1,
which simply means that in the following we measure speeds in
units of the solar wind speed. We choose α = 1.5 in agreement
with the range of values inferred from the heliospheric particle
data (Perri & Zimbardo 2007, 2009; Sugiyama & Shiota 2011).
The superdiffusion coefficient κ is a key parameter of the
theory. Work is underway to estimate κ from the data (S. Perri
et al., in preparation). We adopt κ = 0.5 as an illustration
and investigate how the particle distribution evolves over a few
hundred advection times.

Figure 1 shows the results in a semi-logarithmic plot at time
t = 10. We find a good agreement between the analytical
(solid black line) and semi-numerical (black symbols) solutions,
except for the region around x = −at where the weak diffusion
approximation is not valid. The red box in the figure illustrates
the non-diffusive solution given by Equation (12). We have
truncated the analytical solution in the vicinity of x = −at over
a length l of 10 times the diffusion length (l = 10 ld = 2.5).
The green and blue lines give the steady-state solution for
the Gaussian diffusion case, given by Equation (3), and the
approximate steady-state solution, given by Equation (30).
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f (x,∞) = a−1, x < 0. (4)

In the remainder of the paper, we investigate the follow-
ing fractional differential equation that generalizes the usual
diffusion-advection equation:

∂f

∂t
= κ

∂αf

∂|x|α
+ a

∂f

∂x
+ δ(x) (5)

(e.g., Stern et al. 2014). The equation governs the evolution of
a distribution function f(x, t) for t > 0 and −∞ < x < ∞. For
simplicity, we assume the initial condition

f (x, 0) = 0. (6)

The advection speed a and diffusion coefficient κ (now with
dimensions lengthα/time) are positive constants. We use the
Riesz derivative to define a fractional spatial derivative:

∂αf (x, t)
∂|x|α

= 1
π

sin
(π

2
α
)

Γ(1 + α)

×
∫ ∞

0

f (x + ξ ) − 2f (x) + f (x − ξ )
ξ 1+α

dξ (7)

(Samko et al. 1993; Saichev & Zaslavsky 1997). Because the
derivative corresponds to a fractional Laplacian operator in
higher dimensions, an alternative notation −(−∆)α/2f is also
used (Mainardi et al. 2001). Although the regularized form
above is defined for 0 < α < 2, in the following we are mainly
interested in the superdiffusive case 1 < α < 2.

3. FOURIER TRANSFORM SOLUTION
AND ASYMPTOTICS

The Fourier transform gives a convenient method of solv-
ing the fractional diffusion-advection equation on the interval
−∞ < x < ∞. Taking the Fourier transform of Equation (5)
yields

∂ f̃

∂t
= −κ|k|αf̃ + iakf̃ +

1
2π

, (8)

where

f̃ (k, t) = 1
2π

∫ ∞

−∞
f (x, t) exp(−ikx)dx. (9)

Integration of the first-order equation for f̃ yields

f̃ (k, t) = 1
2π

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

, (10)

where an integration constant is specified by the initial condition
f̃ (k, 0) = 0. Now the inverse Fourier transform gives the
solution

f (x, t) = 1
2π

∫ ∞

−∞

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

exp (ikx) dk.

(11)
In the non-diffusive case, κ = 0 and the integral is evaluated to
give an expanding “top-hat” solution

f (x, t)|κ=0 = f0(x, t) = 1
2a

[
sgn(x + at) − sgn(x)

]
. (12)

The solution of Equation (5) can also be expressed as

f (x, t) =
∫ t

0
G(x + at ′, t ′)dt ′, (13)

where the Green’s function G(x, t) satisfies the fractional
diffusion equation

∂G

∂t
= κ

∂αG

∂|x|α
+ δ(x)δ(t). (14)

Its Fourier transform is given by

∂G̃

∂t
= −κ|k|αG̃ +

1
2π

δ(t). (15)

It follows that

G̃(k, t) = 1
2π

exp(−κ|k|αt), (16)

and the inverse Fourier transform yields

G(x, t) = 1
π

∫ ∞

0
exp(−κkαt) cos(kx)dk (17)

(e.g., Chukbar 1995).
An asymptotic expression for G(x, t) is obtained by integrating

Equation (17) by parts and applying an analogue of Watson’s
lemma for Fourier type integrals (e.g., Ablowitz & Fokas 1997).
For x % (κt)1/α , the result is

G(x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
κt

|x|1+α
. (18)

For x > 0, substitution into Equation (13) yields

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
∫ t

0

κt ′

(x + at ′)1+α
dt ′, (19)

and so the distribution function f(x, t) is given by

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2

[
x1−α − x + αat

(x + at)α

]
(20)

as long as x + at % (κt)1/α and 1 < α < 2. Two limiting cases
are as follows:

f (x, t) ≈ 1
2π

sin
(π

2
α
)

Γ(1 + α)
κt2

x1+α
, x % at, (21)

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2
x1−α, 0 < x ' at.

(22)

Equation (22) is essentially the asymptotic power law that
was previously used in the data analysis of energetic particles,
accelerated in the solar corona (Trotta & Zimbardo 2011) and at
interplanetary shocks (Perri & Zimbardo 2007, 2009; Sugiyama
& Shiota 2011). For instance, Perri & Zimbardo (2007, 2009)
used a formula for the particle density at a fixed point due to a
shock-associated source moving with a speed Vsh. The formula
follows from our analysis by changing the reference frame.
Suppose a shock, initially located at x0 = −Vsht0, moves at
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Figure 5.2 – Four exemplary cases of pseudo particle trajectories (left column) and PDFs after
unit time (right column). First row: Gaussian diffusion (↵ = 1, µ = 2, red). Second row:
Superdiffusion (↵ = 1, µ = 1.5, green). Third row: Subdiffusion (↵ = 0.7, µ = 2, brown).
Fourth row: Competition (↵ = 0.7, µ = 1.2, blue). The red bell-curve always shows the reference
case of Gaussian diffusion.
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Figure 5.2 – Four exemplary cases of pseudo particle trajectories (left column) and PDFs after
unit time (right column). First row: Gaussian diffusion (↵ = 1, µ = 2, red). Second row:
Superdiffusion (↵ = 1, µ = 1.5, green). Third row: Subdiffusion (↵ = 0.7, µ = 2, brown).
Fourth row: Competition (↵ = 0.7, µ = 1.2, blue). The red bell-curve always shows the reference
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Figure 1. Upper panels show the time evolution of the magnitude of the proton
bulk velocity and the proton thermal speed measured by the PLS instrument on
board V2 (P.I.: J. Richardson); the lower panel displays the energetic particle
data measured by the LECP instrument on board V2 (P.I.: S. M. Krimigis). The
shock crossing time is indicated by a vertical dashed line.

of the fits shown in Table 1, we can see that the reduced χ2

indicates that the power law fits the tails of the ion profiles
better than the exponential function, i.e., the transport for ions
in those energy channels is superdiffusive. The exponent of
the power laws lies in the range γ = 0.68–0.71, leading to
a mean square displacement 〈∆x2(t)〉 ∼ t1.29–t1.32. Both the
exponential and the power-law fits have been performed over a
temporal interval of 200 days, starting from 10 days from the TS
front. This time span is much longer than the timescale of the
temporal fluctuations shown in Figure 1, so that those variations
are effectively averaged out. It is worth noting that a recent
MHD numerical simulation by Washimi et al. (2007) indicated
that the TS is expected to move at nearly constant speed in this
period of time, i.e., from 2007 January to August; therefore our
analysis, which assumes a shock moving at constant velocity
(see Equation (3)), is appropriate for these data sets. On the
other hand, by fitting the data without applying the background
(less than 60%) filter, and for time intervals up to 300 days, the
results of the fit weakly change, and the power laws always fit
the data better than the exponentials.

An analysis similar to that reported above could be performed
to the termination shock crossing of V1 in 2004 also. How-
ever, the particle anisotropy observed by LECP on V1 indicates
that the energetic particles are not coming from the termination
shock “in front” of the spacecraft, but mostly from the termi-
nation shock flanks (Decker et al. 2005). This requires better
knowledge of the overall termination shock shape, and a modi-
fication of the technique used here; this will to be done in future
work.

3. DISCUSSION AND CONCLUSIONS

Our analysis shows that the propagation of energetic ions
accelerated at the solar wind termination shock corresponds to
superdiffusive transport. This is the first direct experimental
evidence of ion superdiffusion in space plasmas, and adds to the

Figure 2. Power-law fits of the energetic particle fluxes in various energy
channels.

Table 1
Fit Parameters for the Ion Time Profiles at the Termination Shock

Energy (keV) γ α χ2
pl χ2

e

540–990 0.70 ± 0.07 1.30 0.22 0.40
990–2140 0.71 ± 0.08 1.29 0.18 0.25
2140–3500 0.68 ± 0.15 1.32 0.05 0.07

novelties brought about by the V2 TS shock crossing. Several
considerations are in order.

First, Perri & Zimbardo (2007, 2008a) have found, analyzing
the Ulysses data at about 5 AU, that electron transport is su-
perdiffusive, while proton transport is mostly diffusive. Now,
the diffusive particle motion in the direction parallel to the
magnetic field is due to pitch-angle diffusion, which in turn
is due to the resonant interaction between the particle gyromo-
tion and magnetic fluctuations (Jokipii 1966). In other words,
in Perri & Zimbardo (2007, 2008a) the superdiffusive behavior
of electrons was interpreted as the result of their weak inter-
action with turbulence, since the magnetic power spectrum is
a decreasing power law, so that electrons would resonate with
a very low turbulence level, leading to small pitch-angle diffu-
sion. In this connection, proton transport at 5 AU was found to
be diffusive because their larger gyroradius allows the resonant
interaction with a stronger level of fluctuations. The finding re-
ported here, i.e., that ion transport at the termination shock is
superdiffusive, is probably due to the fact that the magnetic tur-
bulence level decreases with the distance from the Sun (Roberts
et al. 1990; Zank et al. 1996), although it does not die out be-
cause of the input to turbulence given by pick-up ions (see, e.g.,
Chalov et al. 2004). Indeed, when the magnetic turbulence level
goes down, pitch-angle scattering becomes weaker, so that the
parallel velocity does not change sign very frequently; a persis-
tent, long-range correlated velocity is one of the characteristic
features of Lévy random walks and superdiffusion, as explained
in the Introduction. Further, numerical simulations of particle
transport in the presence of turbulence show that the transport
regimes for parallel transport are dependent on the turbulence
level and on the turbulence anisotropy; in particular, parallel
superdiffusion is found for low turbulence levels (Zimbardo
et al. 2006; Pommois et al. 2007; Shalchi & Kourakis 2007).
Note that, in this analysis, we consider that particle transport
is mostly parallel; however, the transport perpendicular to the
magnetic field gives some contribution to the particle motion,
even if it is smaller than the parallel transport (Lee 1983), so that
in a first approximation it can be neglected. On the other hand,
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Figure 1. Upper panels show the time evolution of the magnitude of the proton
bulk velocity and the proton thermal speed measured by the PLS instrument on
board V2 (P.I.: J. Richardson); the lower panel displays the energetic particle
data measured by the LECP instrument on board V2 (P.I.: S. M. Krimigis). The
shock crossing time is indicated by a vertical dashed line.

of the fits shown in Table 1, we can see that the reduced χ2

indicates that the power law fits the tails of the ion profiles
better than the exponential function, i.e., the transport for ions
in those energy channels is superdiffusive. The exponent of
the power laws lies in the range γ = 0.68–0.71, leading to
a mean square displacement 〈∆x2(t)〉 ∼ t1.29–t1.32. Both the
exponential and the power-law fits have been performed over a
temporal interval of 200 days, starting from 10 days from the TS
front. This time span is much longer than the timescale of the
temporal fluctuations shown in Figure 1, so that those variations
are effectively averaged out. It is worth noting that a recent
MHD numerical simulation by Washimi et al. (2007) indicated
that the TS is expected to move at nearly constant speed in this
period of time, i.e., from 2007 January to August; therefore our
analysis, which assumes a shock moving at constant velocity
(see Equation (3)), is appropriate for these data sets. On the
other hand, by fitting the data without applying the background
(less than 60%) filter, and for time intervals up to 300 days, the
results of the fit weakly change, and the power laws always fit
the data better than the exponentials.

An analysis similar to that reported above could be performed
to the termination shock crossing of V1 in 2004 also. How-
ever, the particle anisotropy observed by LECP on V1 indicates
that the energetic particles are not coming from the termination
shock “in front” of the spacecraft, but mostly from the termi-
nation shock flanks (Decker et al. 2005). This requires better
knowledge of the overall termination shock shape, and a modi-
fication of the technique used here; this will to be done in future
work.

3. DISCUSSION AND CONCLUSIONS

Our analysis shows that the propagation of energetic ions
accelerated at the solar wind termination shock corresponds to
superdiffusive transport. This is the first direct experimental
evidence of ion superdiffusion in space plasmas, and adds to the

Figure 2. Power-law fits of the energetic particle fluxes in various energy
channels.

Table 1
Fit Parameters for the Ion Time Profiles at the Termination Shock

Energy (keV) γ α χ2
pl χ2

e

540–990 0.70 ± 0.07 1.30 0.22 0.40
990–2140 0.71 ± 0.08 1.29 0.18 0.25
2140–3500 0.68 ± 0.15 1.32 0.05 0.07

novelties brought about by the V2 TS shock crossing. Several
considerations are in order.

First, Perri & Zimbardo (2007, 2008a) have found, analyzing
the Ulysses data at about 5 AU, that electron transport is su-
perdiffusive, while proton transport is mostly diffusive. Now,
the diffusive particle motion in the direction parallel to the
magnetic field is due to pitch-angle diffusion, which in turn
is due to the resonant interaction between the particle gyromo-
tion and magnetic fluctuations (Jokipii 1966). In other words,
in Perri & Zimbardo (2007, 2008a) the superdiffusive behavior
of electrons was interpreted as the result of their weak inter-
action with turbulence, since the magnetic power spectrum is
a decreasing power law, so that electrons would resonate with
a very low turbulence level, leading to small pitch-angle diffu-
sion. In this connection, proton transport at 5 AU was found to
be diffusive because their larger gyroradius allows the resonant
interaction with a stronger level of fluctuations. The finding re-
ported here, i.e., that ion transport at the termination shock is
superdiffusive, is probably due to the fact that the magnetic tur-
bulence level decreases with the distance from the Sun (Roberts
et al. 1990; Zank et al. 1996), although it does not die out be-
cause of the input to turbulence given by pick-up ions (see, e.g.,
Chalov et al. 2004). Indeed, when the magnetic turbulence level
goes down, pitch-angle scattering becomes weaker, so that the
parallel velocity does not change sign very frequently; a persis-
tent, long-range correlated velocity is one of the characteristic
features of Lévy random walks and superdiffusion, as explained
in the Introduction. Further, numerical simulations of particle
transport in the presence of turbulence show that the transport
regimes for parallel transport are dependent on the turbulence
level and on the turbulence anisotropy; in particular, parallel
superdiffusion is found for low turbulence levels (Zimbardo
et al. 2006; Pommois et al. 2007; Shalchi & Kourakis 2007).
Note that, in this analysis, we consider that particle transport
is mostly parallel; however, the transport perpendicular to the
magnetic field gives some contribution to the particle motion,
even if it is smaller than the parallel transport (Lee 1983), so that
in a first approximation it can be neglected. On the other hand,
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Fig. 2.— Solution of the di↵usion equation (1) with the di↵usion coe�cient (2) for ⌫ = 1/2 (Eq.

(27), left panel) and ⌫ = 2/3 (Eq. (29), right panel) for the reservoir initial condition (16) at times

t = 0.001, 5, 10, 20, 40, 70 and 100. The symbols in the right panel indicate the numerical solution

that was tested thereby.
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where V and S are constant, and H(t) is the Heaviside step function. A delta-functional

source S�(x) may correspond to energetic particles injected at an interplanetary shock, and V

may be interpreted as the speed of a background flow such as the solar wind. For simplicity,

assume that f(x, 0) = 0.

3.1. Analytical solutions for limiting cases

In the limit of weak di↵usion (D0 ! 0), the di↵usive term in equation (30) is negligible,

and the density profile is given by a boxcar function:

f(x, t) ⇡ S

V
[H(x+ V t)�H(x)] , (31)

where the solution of a first-order di↵erential equation is specified by the particle conservation

constraint
R
fdx = St. In the opposite limit of strong di↵usion or weak advection (V ! 0),

the solution of equation (30) has a self-similar form f(x, t) = x✓(xt�1/2), which leads to a

nonlinear ordinary di↵erential equation for the function ✓.
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certain simplifying assumptions for the wave generation rate, it is possible to express the

turbulent energy density in terms of the particle distribution function and hence obtain an

equation for the evolution of f(x, t). The resulting nonlinear equation (1) contains the dif-

fusion coe�cient D that is defined by @f/@x (or by rf in a more general three-dimensional

problem). Solutions of equation (1) may serve to interpret the cosmic-ray data and guide

the development of more detailed models.

As a concrete illustration, we consider a model in which the wave generation by the

streaming particles is assumed to be balanced by wave dissipation (Ptuskin et al. 2008),

which yields the di↵usion coe�cient

D = D0

����
@f

@x

����
�⌫

, D0 = const. (2)

Without loss of generality, below we set D0 = 1, which corresponds to the change of variable

D0t ! t. Concrete physical situations correspond to ⌫ = 1/2 and ⌫ = 2/3: the first

case corresponds to energy dissipation by a Kolmogorov-type energy cascade (Ptuskin &

Zirakashvili 2003), and the second case corresponds to wave energy transfer to the thermal

ions that interact with moving magnetic mirrors formed by the waves (Zirakashvili 2000).

More generally, equation (2) with some other value of ⌫ might approximate the nonlinear

di↵usion coe�cient D in a certain parameter range. Mathematically, the expression for

D leads to a nonlinear di↵usion equation that had been termed n-di↵usion (Philip 1961).

Thus the model for cosmic-ray evolution which we investigate provides a concrete physical

illustration of n-di↵usion.

2. Exact solutions and superdi↵usive scalings

We now present exact solutions for nonlinear di↵usion and discuss the anomalous trans-

port scalings that may result.

2.1. Self-similar solutions for nonlinear di↵usion

Consider first an initial value problem specified by

f(x, 0) = �(x). (3)

The initial condition describes the release of particles at the origin at t = 0. To describe

their subsequent evolution, we seek a self-similar solution that satisfies the nonlinear di↵usion

[Ptuskin et al., 2008]
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If ⌫ = 2/3, we recover the solution derived by Ptuskin et al. (2008):

�(⇠) =

"
a2/3 +

1

2

✓
3

2

◆3

⇠
4

#�1/2

, (12)

a2/3 =
1

27⇡2
�8

✓
1

4

◆
. (13)

Both solutions are illustrated in Fig. 1.

Fig. 1.— Solution of the di↵usion equation (1) with the di↵usion coe�cient (2) for ⌫ = 1/2 (Eq.

(10), left panel) and ⌫ = 2/3 (Eq. (12), right panel) for the point source initial condition (3) at

times t = 0.001, 2, 4, 6, 12 and 20.

The essential point is that the self-similar solution for f(x, t) yields an anomalous,

superdi↵usive scaling of the mean square displacement:

hx2i = 2t1/(1�⌫)

Z 1

0

⇠
2
�(⇠)d⇠ ⇠ t

1/(1�⌫)
. (14)

The convergence of the integral in equation (14) requires that 0 < ⌫ < 1/2. The limiting

cases correspond to standard di↵usion, hx2i ⇠ t (⌫ ! 0), and ballistic motion, hx2i ⇠ t
2

(⌫ ! 1/2).

Physically, the divergence of the integral in equation (14) for ⌫ � 1/2 reflects the fact

that the particle flux F ⇠ x
�(2�⌫)(1�⌫)/⌫ falls o↵ too slowly as x ! 1, indicating the

breakdown of the di↵usion approximation at large x and formally leading to unphysical

“superballistic” scalings for the second and higher moments of the distribution. Since the

integral for hx2i diverges in the physically relevant case ⌫ = 2/3, another observable measure

of nonlinearity is useful. Ptuskin et al. (2008) suggested to use the time tm at which the



Summary

• Anomalous diffusion can occur in many natural and artificial systems 

• Both super- and subdiffusion can show as transient or long-time persistent features. 

• They can compete with each other simultaneously (need for higher moments) 

• In the energetic particle context, there are potential applications to shocks, shock-

acceleration, stochastic acceleration and particle transport 

• The correct mathematical tools to describe anomalous diffusion need to be developed 

and tested, and supported by first-principle studies, e.g. particle tracing in turbulence

Thank you!


