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1. Introduction

Cosmic rays are blocked by the moon, so IceCube measures a deficit in cosmic-ray-induced muons with 
high statistics. Therefore, this moon shadow is used as a standard candle in muons, which enables 
several applications for the moon shadow analysis: 
• Test of different analysis techniques without the need of Monte-Carlo simulations
• Testing of different directional reconstruction algorithms 
Improved analysis methods[1] are used, compared to the previously performed moon shadow analysis 
from 2014[2], including better uncertainty estimation, background and source descriptions.

2. Analysis 

The source hypothesis ሚܵ is tested on a ±3° grid moving with the moon by comparing events in ±10° to the 
background hypothesis ܤ෨ , using a maximum-likelihood method, with the likelihood function
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Therefore, the number of source events ݊ୱ is fit with regards to the total number of events ܰ for each grid 
point, where ⃗ݔ = ߠߜ,߶ߜ ் is the positional vector from the reconstructed direction to the grid point.
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Coordinate System

Event Uncertainty Estimation
The uncertainties of the directional reconstructions of the muons are often approximated by two-
dimensional asymmetric Gaussian distributions in the likelihood landscape, described by the covariance 
matrix Σ defined by semi-major and -minor axes ߪଵ,ߪଶ and the rotational angle ߙ. The uncertainties are 
typically underestimated; therefore, a scaling is done in azimuth and zenith directions:
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The scaling factors are determined using the standard deviations of the marginalized Gaussians
థߪ Σ, థݏ = ܾ    and   ߪఏ Σ, ఏݏ = ܽ,  such that they have the correct statistical coverage. As a check, 
the 2D standard deviations are tested for correct coverage.
The resulting equation of the scaled uncertainty ellipsis, using Σᇱ = ℛΛᇱ ℛ், is:
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Source Term 
For a point-like source, the Gaussian distribuƟon of the event is evaluated on a grid point → integraƟon 
with delta distribution. With the same ansatz, an extended disc-like source is integrated with a 
Heaviside step function over a disc around the grid point with radius ܴ☾, scaled with sin(ߠ) in azimuth 
direction to correct the circle in the used Cartesian coordinate system:
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Background Term 
The off-source region, defined by different azimuth values in the same zenith band as the source region, is 
used to determine the true background distribution ܤ in zenith dependency. For this purpose, the sum of 
the scaled Gaussian uncertainty distributions of all events, evaluated on grid points relative to the center 
position of the off-source region, is taken.
The probability to be a background event for events in the source region is calculated as the expected 
value of the background distribution under the event’s Gaussian distribution:

Evaluation
Source significance: ΔLLH to nୱ = 0 with 1 d.o.f., 

significance with which a source can be identified
Pointing significance: ΔLLH to min( nୱ ) with 2 d.o.f. (position of the minimum),

provides the precision of the positional reconstruction, given by the size of the
significance contours 

4. Outlook
• Moon analysis will be implemented as a monthly test of the detector
• Will be used to test a new detector calibration, based on real data 
• Tool to test new analysis methods and direction reconstruction algorithms 
• Allows new studies like investigations of the geomagnetic field

ܴ☾
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3. Test of Directional Reconstruction Algorithms

Reconstructions are compared by using the maximum of the source significance (5 separate months of 
data and combined data set) and the contours of the pointing significance (only on combined data set). 
For a direct comparison, the exact same data must be used. The analysis requires a cut on the 
uncertainties, which causes a difference in the number of events depending on whether uncertainties are 
asymmetric or symmetric.  compare only reconstructions with the same uncertainty type

Two new directional reconstruction methods are compared to the current default SplineReco[3]:

All reconstructions are compatible within 1σ in their pointing and show a systematic shift to the true 
moon position, which might be attributed to the geomagnetic field or systematic effects.

CRNN-Reco[4]↔ SplineReco
(only symmetric uncertainties with 1-dimensional scaling)

Machine-learning-based reconstruction
(convolutional & recurrent neural network)

The pointing is less precise for CRNN-Reco, and source 
significances are smaller for all single months and the 
combined data set.

→ CRNN-Reco performs worse than SplineReco on 
cosmic-ray-induced muons (muon bundles)

but: CRNN-Reco intended to reconstruct single muons
→ likely to perform better if trained on muon bundles

Most importantly: machine-learning-based reconstruction 
trained on Monte Carlo data 
performs well on real data

SegmentedSpline[5]↔ SplineReco
(asymmetric uncertainties)

Advancement over SplineReco by using 
a better energy-loss estimation

Both pointing contours are nearly the same, 
and there are only small differences in the 
source significances.

→ similar performance for 
SegmentedSpline and SplineReco

but: SegmentedSpline is an improvement  
for ≳ 50 TeV muons, while the energy of 
the data sample is only 1 − 10 TeV

→ no large improve-
ments expected

14.3σ / 12.7σ 10.0σ / 10.2σ
combined data set: combined data set:


