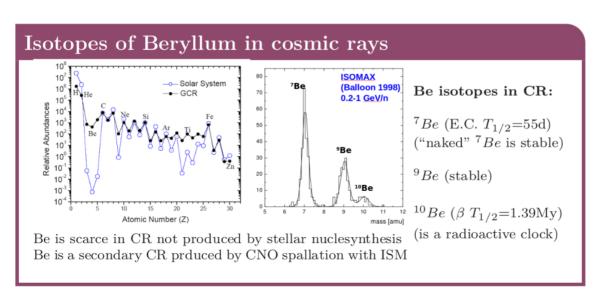
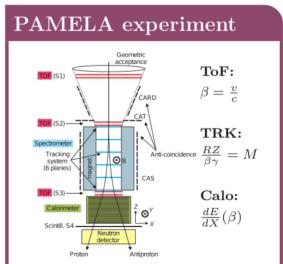


A Data-Driven approach for the measurement of ¹⁰Be/⁹Be flux ratio in Cosmic Rays with magnetic spectrometers

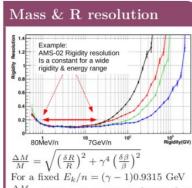
F. Nozzoli^{1,2} and C. Cernetti²

The ¹⁰Be/⁹Be flux ratio (thanks to the 2 My lifetime of ¹⁰Be) is a radioactive clock providing the measurement of CR residence time in the Galaxy. Existing measurements of ¹⁰Be/⁹Be in CR are limited to low energy and affected by large uncertainties, in particular from the Montecarlo simulation. A Data-Driven approach in magnetic spectrometers is presented, as an example it is applied to PAMELA data providing a new measurement in the 0.25-0.85 GeV/n range.





¹ INFN-TIFPA Trento Institute for Fundamental Physics and Applications. ² Universitá degli Studi di Trento, Trento, Italy.



 $\frac{\Delta M}{M}$ = const. => mass template scaling Templates T_7 , T_9 and T_{10} are the three unkown mass distributions.

The "Data-Driven" approach: recipe summary

The three Be mass are similar, a linear

approximation is applied. σ_a is the RMS

of T_a and x_a is the median of T_a . The

function: $x \to \frac{\sigma_a}{\sigma_b} x + \left[x_a - \frac{\sigma_a}{\sigma_b} x_b \right]$.

different, template $L_{ab}T_c = T_d$ is:

 $D(x) = {}^{7}BeT_{7} + {}^{9}BeT_{9} + {}^{10}BeT_{10}$

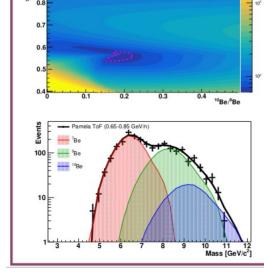
The ⁷Be template can be written as:
$$T_7 = \frac{1}{^7Be} \left[D - \frac{^9Be}{^7Be} L_{7,9}D - \frac{^{10}Be}{^7Be} L_{7,10}D \right] +$$

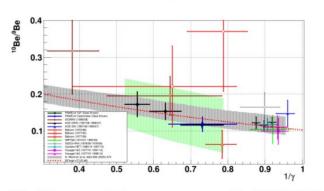
 $+\left(\frac{g_{Be}}{\tau_{Be}}\right)^{2}T_{G1} + \frac{g_{Be}}{\tau_{Be}}\frac{^{10}Be}{\tau_{Be}}(T_{G2} + T_{G3}) + \left(\frac{^{10}Be}{\tau_{Be}}\right)^{2}T_{G4}$ (linear) transformation $L_{a,b}T_a = T_b$ is the the last four terms, are defined by:

$$\begin{split} T_{G1} &= L_{7,9}T_{9} = L_{7,x_{G1}}T_{7} \quad T_{G2} = L_{7,9}T_{10} = L_{7,x_{G2}}T_{7} \\ T_{G3} &= L_{7,10}T_{9} = L_{7,x_{G3}}T_{7} \quad T_{G4} = L_{7,10}T_{10} = L_{7,x_{G4}}T_{7} \end{split}$$

The same transformation but applied to a T₇ can be iteratively evaluated for each $\sigma_d = \sigma_c \frac{\sigma_b}{\sigma_c}$ and $x_d = x_b + (x_c - x_a) \frac{\sigma_b}{\sigma_c}$. fixed ⁷Be > ⁹Be > ¹⁰Be configuration The known (measured) data distribution

 T_9 and T_{10} are obtained by scaling T_7 is D(x), thus this system must be solved: and a χ^2 is evaluated. Three un-physical $\chi^2 = 0$ solutions are ⁿBe/Be=1. Use of $L_{7,9}D(x) = {}^{7}BeT_9 + {}^{9}BeL_{7,9}T_9 + {}^{10}BeL_{7,9}T_{10}$ the statistical bootstrap is suggested for $L_{7,10}D(x) = {}^{7}BeT_{10} + {}^{9}BeL_{7,10}T_{9} + {}^{10}BeL_{7,10}T_{10}$ confidence intervals of physical solution.





Data-Driven approach allows a new measurement in 0.25-0.85 GeV/n. Green shaded area is a (cautious) systematic error.

First experimental hint for time dilation effect in ¹⁰Be/⁹Be.

Adopting a minimal model: ${}^{10}\text{Be}/{}^{9}\text{Be} = \text{Ae}^{-\frac{T}{\gamma\tau}}$ (known $\tau = 2\text{My}$)

 $A = 0.27 \pm 0.13$ and $T = 1.9 \pm 1.1$ My (dominated by PAMELA data) Data-Driven approach allows an independent test of Montecarlo systematics. Next step is the measurement using AMS-02 data.