Diffuse Supernova Neutrino Background search at SK with neutron tagging
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important to validate the performance of neutron tagging on real
neutrons from data, and compare it to performance on
simulation to evaluate systematic uncertainties.

look for the delayed coincidence signal from the IBD neutron,
which will be captured by an atomic nucleus in the water and
produce a weak Cherenkov signature of their own.
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spectrum against several theoretical models, reaching the best current experimental
sensitivity to the DSNB.

= We make a first projection of the sensitivity of SK to the DSNB with Gd-doped water.

= Neutron tagging will be adapted to the detection of neutron captures on Gd to achieve
higher efficiency

= We use calibration data with Am/Be source placed in the

= Current analysis: uses runs from the SK-IV data-taking era , , ,
detector, producing neutrons through radioactive decay.

(Sep 2008-May 2018), combined with results from
previous runs (SK-I-11-111, 1996-2008)

— neutron capture by H: 2.2 MeV signal, rc4p ~ 200us

= The amount of true neutrons after cuts in data, and thus the
efficiency of neutron tagging, are extracted statistically, assuming
neutron capture time follows a decaying exponential from IBD
interaction time, with a constant background component.

= Further sensitivity improvements are possible, for example through further reduction of
atmospheric backgrounds contaminating the signal region of our fit.
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* Future analysis with SK-VI+: neutron is captured by Gd /
with high probability (up to 20% for nominal Gd P S SEAS RO .
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