
An analytical derivation of the survival probability of muon penetrating through matters

Atsushi Iyono, S. Yamamoto, S. Tsuji¹, K. Okei¹, H. Matsumoto¹, and T. Nakatsuka²

Department of Fundamental Science, Okayama University of Science, Okayama 700-0005, Japan

²Laboratory of Information Science, Okayama Shoka University, Okayama 700-8601, Japan

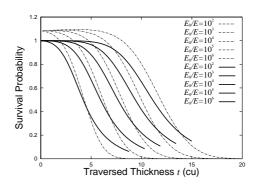
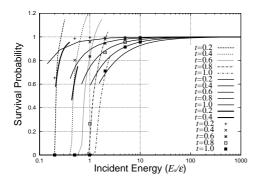



Figure 1: Survival probabilities with $\varepsilon' = 0$ (Approx. A) versus E_0/E at t = 1, 2, 3, 4, 5 (left panel) and those versus t with $E_0/E = 10^2$, 10^3 , 10^4 , 10^5 , 10^6 (right panel), derived by the ordinary saddle point method (thin lines) and via the complementary-probability method (thick lines).

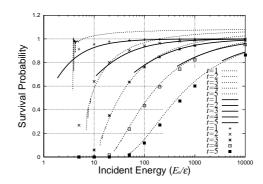
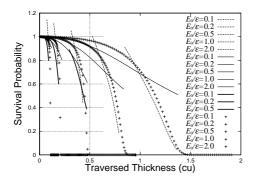



Figure 2: Survival probabilities (Approx. B) versus E_0/ε' at $t=0.2,\,0.4,\,0.6,\,0.8,\,1$ (left panel) and those at $t=1,\,2,\,3,\,4,\,5$ (right panel), derived by the ordinary saddle point method (thin dot lines), via the complementary-probability method (thick lines), via the extended complementary probabilities from large E_0/ε' region (thin lines in the left panel), and by Monte Carlo simulations (dots).

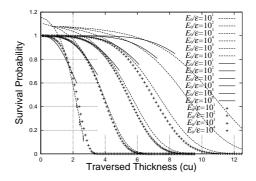


Figure 3: Survival probabilities (Approx. B) versus t with $E_0/\varepsilon' = 0.1\ 0.2,\ 0.5,\ 1.0,\ 2.0$ (left panel) and those with $E_0/\varepsilon' = 10,\ 10^2,\ 10^3,\ 10^4,\ 10^5,\ 10^6$ (right panel), derived by the ordinary saddle point method (thin lines), via the complementary-probability method (thick lines), and by Monte Carlo simulations (dots).

¹Department of Natural Sciences, Kawasaki Medical School, Kurashiki 701-0192, Japan