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Machine learning techniques are powerful tools for the classification of unidentified gamma-ray sources. We present a new approach based on dense and recurrent deep neural networks to classify unidentified or unassociated gamma-ray sources in the last release of the Fermi-LAT
catalog (4FGL-DR2). Our method uses the actual measurements of the photon energy spectrum and time series as input for the classification, instead of specific, hand-crafted features. We focus on different classification tasks: the separation between extragalactic sources, i.e.
Active Galactic Nuclei (AGN), and Galactic pulsars, the further classification of pulsars into young and millisecond pulsars and the sub-classification of AGN into different types. Since our method is very flexible, we generalise it to account for uncertainties in the predicted classes.
Our list of high-confidence candidate sources labelled by the neural networks provides targets for further multiwavelength observations to identify their nature, as well as for population studies.
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