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SNR as Candidate of PeVatron

Observations suggest that young SNRs (tage~103 yr) are not PeVatron.
v' B filed amplification by the Bell instability is not enough?

H.E.S.S. (2016) RX J1713.7-3946, E > 2 TeV
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Earlier phase of supernova shock in dense CSM is more plausible?
Schure & Bell 13, Marcowith+18

v' High B field is expected in CSM created by red-super-giant, although B field
amplification by the Bell instability is necessary.

v' ~ 10 days after explosion as candidate of PeVatron.



Very Young SNRs as PeVatron Candidates

Schure & Bell 13; Marcowith+14, 18; Cardillo+15

RSG CSM model (Marcowith+18):

Wind kinetic energy density:

_2 .
1 2 r M Uy
Ex ==pyVs =5X103er cm‘3S'1( ) ( )( )
K = 3 Pwhw g 104cm 10-5 Mg/yr/) \10 km/s

- 1/2
(10 km/s)

* RSG wind is driven by pulsation of star that can naturally drive turbulent dynamo in the wind.

Assuming K to B energy conversion efficiency w

-1 M 1/2
Besy = (8T ng)l/z = (0.25 w!”? Gauss (1017;cm) (—10_5 Ms/yr)

*|If (turbulent) dynamo in the wind is very efficient, w can be ~ 1 (Cho+).

* Zeeman observations report ~1 Gauss fields (w ~1; Auriére+10, Tessore+17).

v E_. estimated from standard DSA (no B-field amplification assumed):

Enax ~ 10 eV (o.fa) (10‘:];::1/5)2 (10 :lay)

- 10 times B amplification is enough to achieve PeV acceleration.




Bell+ 13

Sasic Equations noue 19

Bell MHD + Telegrapher-type Diffusion Convection Eg.
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Injection at shock front +

CR momentum distribution function: f(X, p) :ﬁ)(x, p) v .(p\/p)fi (x, p) cooling by p-p collision.
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Take limit ¢ >« recovers conventional diffusion convection equation (Skilling 75).

We solve polar coordinate version of the equations.



Bell+ 13

Sasic Equations noue 19

Bell MHD + Telegrapher-type Diffusion Convection Eg.
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Take limit ¢ >« recovers conventional diffusion convection equation (Skilling 75).

We solve polar coordinate version of the equations.



A Bit More Information of Microphysics

Return current estimation (Bell 04)
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p, is taken so that only CRs whose gyro-radius is larger B

than the Bell instability scale contribute to the current: 7;(p1) = 1ge] <= ](ng)>

Diffusion coefficient (Caprioli & Spitkovsky 14)

( §) 4 max(Bf,8B%)  vcgrPcrC
P, B) =30 5B2 e max(|B,|, 6B)

When 6B/B < 1, diffusion coefficient due to gyro-resonance scattering.
When 6B/B > 1, Bohm diffusion under amplified B field.

Injection from thermal pool (Blasi+05)

Fraction n of shock heated gas put into acceleration process.
Y 11 M Usp Dinj
afo(t,r = Tsn) =2 o

source T PTev PTev

* We assume CRs of E < 1TeV follows standard DSA spectrum at shock.
* Momentum space p=(1TeV/c to 10PeV) is expressed by 64 cells by logarithmic interval.

S(p — Prev)d(r — 1sp)



Difficulty of Direct Simulation

(ordinary) Diffusion convection equation has to solve a parabolic term
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2

3¢ 9x? o for numerical stability.

e the most unstable scale of the Bell instability is Ly~ 10°°cm (~cpv,y/ jopr B)
2> Ax < LBell/IO ~ 107 cm, while LCSM ~105cm 2> Ncell > 106

e |[f we use explicit scheme, the required timestep for stability becomes

2

At<Ax

~ 1010 day (for PeV CRs)
2K

- need >101! timestep to integrate 10 days (impossible job).

* Implicit scheme can be used, but inconvenient for parallel computer (fatal problem).

Telegrapher-type modification (hyperbolic eqgs) alleviate the problem!

e Our telegrapher-type basic equations are hyperbolic.

e The CFL condition for hyperbolic egs.:

AX 10 day (for Ax = Ly /10)

At <
c/\/§

- 107 timestep for 10 days simulation (Feasible job).



Setting of Simulation

Blast wave simulation with CR acceleration and the Bell instability.

v Vshock ~ Vejecta — 10* km/s (Ms ~ MA ~ 100)

* CSMin r<ryis too dense to accelerate

— 1014
v Integrate from "o 10* cm. particles due to inelastic pp-collision.

v' Initial B field is turbulent (flat spectrum; typical of dynamo).

Br(l", l:O) = BCSM(I")/\IZ, |B9,¢(7", l:())| = BCSM(F)/\/Q'

v Injection rate: n=6X10"* > Pcr/ pvg?~0.1

consistent with observational constraint from SN1997J:
0/ Py 72 (pg= 5% 10-15 g ¢m3 ) n < 103 (Tatischeff 09).
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v’ Spatial resolution: Ar = 2107 cm ~10° cm.
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Results: Shock propagation

case: Mpgs ~107° My/yr, Ve = 10,000 km/s, 7=6x10"*
Shock front
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v' Upstream B-field is indeed amplified by the Bell instability.

v' Degree of the amplification is only factor 10 or less, which is

1/2
smaller than the Bell instability saturation level: =22 = (M) ~100.
BO eCBo



Results: CR spectra at shock

case: Mpsg ~107° My/yr, v = 10,000 km/s, 7= 6% 107
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Problem: Why non-saturation?

Why B field amplification doesn’t reach saturation level.
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More Realistic CSM based on Observations

Stellar wind become much more dense before explosion (Forster+18, Nature).

v' Light curve study of type-Il SNe found that stellar wind becomes
~100 times denser than typical RSG wind (M~1073 My/yr).

- higher CSM kinetic energy - stronger CSM dynamo - stronger CSM B field
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Results: Shock propagation

case: Mpge ~1073 Myjyr, Ve; = 10,000 km/s, 77=6x10"

. Shock front
density structure o r\o\n B structure around shock
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v' Upstream B-field is amplified by the Bell instability.

v' Degree of the amplification is only factor 10, but the amplified level is
enough to make E,,x > 1 PeV.
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hisher M model (fiducial)

Mgsc ~1072 My/yr, v,; = 10,000 km/s, 7=6% 107
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Emax fit = 2.9 x 10 eV reaches to the knee energy.



Summary

v CR acceleration under the influence of the Bell instability is studied.

v' The Bell instability amplifies B field by a factor ~10, but it does not
reach to the saturation level because of the limited e-folding number.

v At very young SNR propagating in RSG CSM, acceleration beyond PeV
is possible under the realistic range of parameters.

Future Plan

v A few more microphysics: CR pressure to fluid.

v Effects of CR pressure to the background fluid (Kang & Jones 07)
would enhances amplification (Drury insta.+dynamo; Beresnyak+09).

v 341D simulation is feasible in near future by FUGAKU supercomputer.

v’ Particle acceleration in (mildly) relativistic shocks by GRB/AGN jets
can be studied by using similar method.



